Урок №12 (13.10.2006) Конденсаторы. Емкость.

1. Связь между зарядом пластин плоского конденсатора и разностью потенциалов между пластинами

Пусть площадь пластины S , расстояние между пластинами d , заряд на пластинах $\pm q$. Тогда поле между пластинами по теореме Гаусса будет $\Phi = \frac{q}{\varepsilon_0}$, $\Phi = E \cdot 2S$, следовательно $E = \frac{q}{2S\varepsilon_0}$ — для каждой пластины. Поле вне конденсатора взаимно уничтожается, а внутри — складывается. Следовательно полное поле будет $E = \frac{q}{S\varepsilon_0}$ Работа поля над единичным положительным зарядом при перемещении его от пластины +q к пластине -q будет $A = 1 \cdot E \cdot d$, т.е. разность потенциалов равна $\Delta \varphi = \frac{qd}{S\varepsilon_0}$.

Видно, что разность потенциалов пропорциональна заряду пластин.

2. Что такое конденсатор

Примеры конденсаторов: плоский, сферический, цилиндрический. Обозначение конденсатора на схеме

3. Емкость

Величину $C = \frac{q}{{}_{\Delta} \varphi}$ называют **емкостью**. 1 ϕ ара $\partial = \frac{1}{1} \frac{\kappa y \pi o h}{60 \pi b m}$ — гигантская величина!

Для плоского конденсатора $C = \varepsilon_0 \frac{S}{d}$.

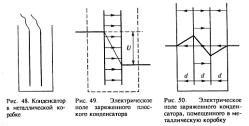
Задача

1. Посчитать емкость сферического конденсатора со сферами радиусов r и R.

Теперь, устремив R к бесконечности, можно найти ёмкость шара радиуса r. Это, так называемая, <u>ёмкость уединённого проводника</u> (в данном случае — шара).

4. Конденсатор с диэлектриком

$$C = C_0 \cdot \varepsilon$$


5. Параллельное и последовательное соединение конденсаторов

При параллельном соединении конденсаторов потенциалы обкладок совпадают, а полный заряд равен сумме зарядов, следовательно $q_i = C_i \cdot_\Delta \varphi$, $q = C_\Delta \varphi$, $q = \sum_i q_i =_\Delta \varphi \sum_i C_i$ и $C = C_1 + C_2 + \ldots + C_n$.

При последовательном соединении заряды везде одинаковы, а полная разность потенциалов равна сумме, следовательно $U = \sum_i U_i = q \sum_i \frac{1}{C_i} = \frac{q}{C}$, откуда $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$.

6. Задачи

1. Дан плоский конденсатор емкости C. Найти емкость этого конденсатора в «коробке».

- 2. Посчитать емкость трехпластинчатого конденсатора.
- 3. Два одинаковых плоских конденсатора соединены параллельно и заряжены до разности потенциалов V_0 . Найти разность потенциалов V между пластинами конденсаторов, если после отключения конденсаторов от источника напряжения у одного конденсатора уменьшили расстояние между пластинами вдвое.
- 4. Конденсатор емкости C_1 , заряженный до разности потенциалов V_1 , соединили параллельно с заряженным до разности потенциалов V_2 конденсатором, емкость которого неизвестна. Найти емкость второго конденсатора, если разность потенциалов между обкладками конденсаторов после соединения оказалась равной V.